Haplotype trees and modern human origins.
نویسنده
چکیده
A haplotype is a multisite haploid genotype at two or more polymorphic sites on the same chromosome in a defined DNA region. An evolutionary tree of the haplotypes can be estimated if the DNA region had little to no recombination. Haplotype trees can be used to reconstruct past human gene-flow patterns and historical events, but any single tree captures only a small portion of evolutionary history, and is subject to error. A fuller view of human evolution requires multiple DNA regions, and errors can be minimized by cross-validating inferences across loci. An analysis of 25 DNA regions reveals an out-of-Africa expansion event at 1.9 million years ago. Gene flow with isolation by distance was established between African and Eurasian populations by about 1.5 million years ago, with no detectable interruptions since. A second out-of-Africa expansion occurred about 700,000 years ago, and involved interbreeding with at least some Eurasian populations. A third out-of-Africa event occurred around 100,000 years ago, and was also characterized by interbreeding, with the hypothesis of a total Eurasian replacement strongly rejected (P < 10(-17)). This does not preclude the possibility that some Eurasian populations could have been replaced, and the status of Neanderthals is indecisive. Demographic inferences from haplotype trees have been inconsistent, so few definitive conclusions can be made at this time. Haplotype trees from human parasites offer additional insights into human evolution and raise the possibility of an Asian isolate of humanity, but once again not in a definitive fashion. Haplotype trees can also indicate which genes were subject to positive selection in the lineage leading to modern humans. Genetics provides many insights into human evolution, but those insights need to be integrated with fossil and archaeological data to yield a fuller picture of the origin of modern humans.
منابع مشابه
HapCompass: A Fast Cycle Basis Algorithm for Accurate Haplotype Assembly of Sequence Data
Genome assembly methods produce haplotype phase ambiguous assemblies due to limitations in current sequencing technologies. Determining the haplotype phase of an individual is computationally challenging and experimentally expensive. However, haplotype phase information is crucial in many bioinformatics workflows such as genetic association studies and genomic imputation. Current computational ...
متن کاملDeep divergences of human gene trees and models of human origins.
Two competing hypotheses are at the forefront of the debate on modern human origins. In the first scenario, known as the recent Out-of-Africa hypothesis, modern humans arose in Africa about 100,000-200,000 years ago and spread throughout the world by replacing the local archaic human populations. By contrast, the second hypothesis posits substantial gene flow between archaic and emerging modern...
متن کاملHaplotype Block Partitioning and tagSNP Selection under the Perfect Phylogeny Model
Single Nucleotide Polymorphisms (SNPs) are the most usual form of polymorphism in human genome.Analyses of genetic variations have revealed that individual genomes share common SNP-haplotypes. Theparticular pattern of these common variations forms a block-like structure on human genome. In this work,we develop a new method based on the Perfect Phylogeny Model to identify haplo...
متن کاملHaplotypes in the dystrophin DNA segment point to a mosaic origin of modern human diversity.
Although Africa has played a central role in human evolutionary history, certain studies have suggested that not all contemporary human genetic diversity is of recent African origin. We investigated 35 simple polymorphic sites and one T(n) microsatellite in an 8-kb segment of the dystrophin gene. We found 86 haplotypes in 1,343 chromosomes from around the world. Although a classical out-of-Afri...
متن کاملThe origins of southern and western Eurasian populations: an mtDNA study
The current dissertation is based on the following publications referred to in the text by their Roman numbers: I. Abbreviations bp base pair COII cytochrome oxydase subunit II CRS Cambridge Reference Sequence (Anderson et al. 1981) D-loop displacement loop (=control region) of mtDNA HVS-I the first hypervariable segment of the control region LGM the Last Glacial Maximum LHON Leber's hereditary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physical anthropology
دوره Suppl 41 شماره
صفحات -
تاریخ انتشار 2005